

Mapping & Querying Protein-Protein Interactions from SARS-CoV-2, HPV, and HIV Datasets

Shanzay Farzan Middlesex County College

Advisor: Dr. Phalguni Ghosh

Respiratory Droplet

2020, Watercolor and Ink on Paper

RCSB Protein Data Bank doi: 10.2210/rcsb_pdb/goodsell-gallery-024

SARS-CoV-2 PDB Timeline

Late 2019

- Unexplained influenza-like illness seen in Wuhan, PRC

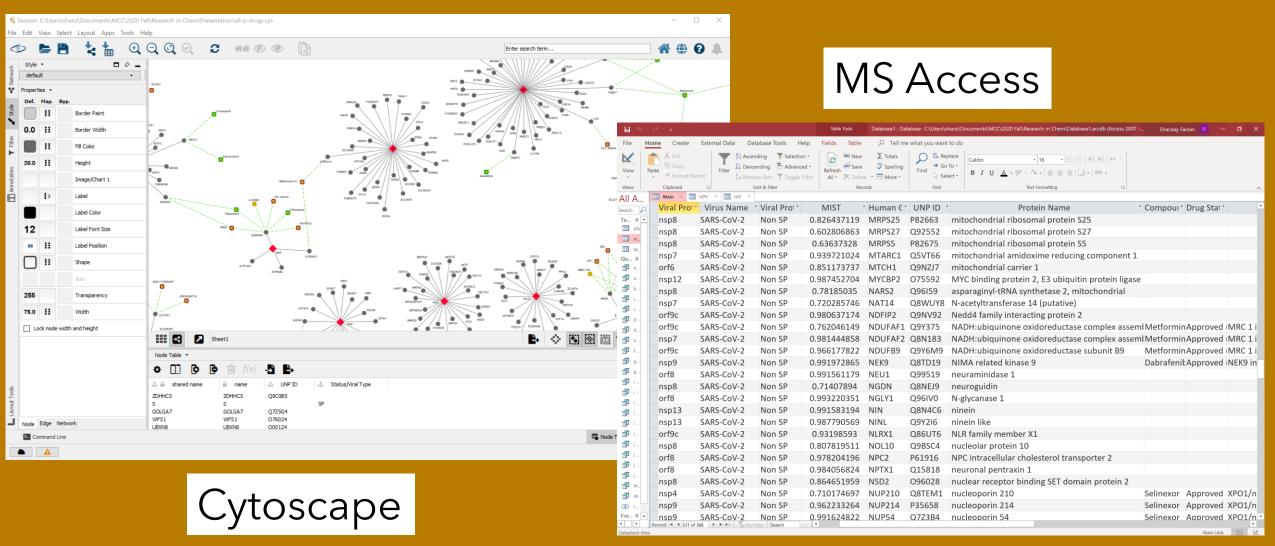
January 2020

- Identified as SARS-CoV-2 virus
- Genome sequence released

May 2021

- Worldwide cases: 154 Million
- Number of cases in the US: 32.5 Million
- Number of deaths in the US: 578,000

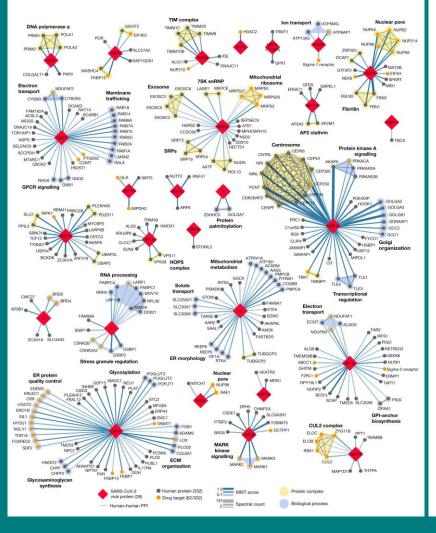
"A SARS-CoV-2 protein interaction map reveals targets for drug repurposing"


Gordon, D.E., Jang, G.M., Bouhaddou, M. et al. Nature 583, p. 459-468 (2020).

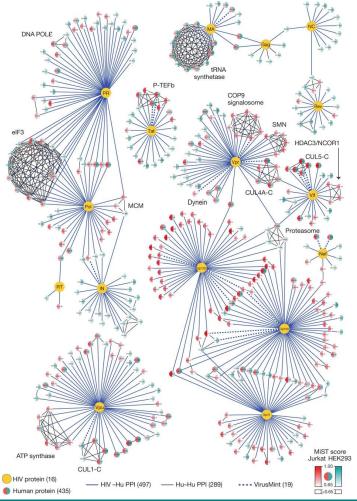
- 1. Identified human proteins that interact with SARS-CoV-2 protein
- 2. Identified 66 potential human proteins targeted by 69 compounds

Objectives

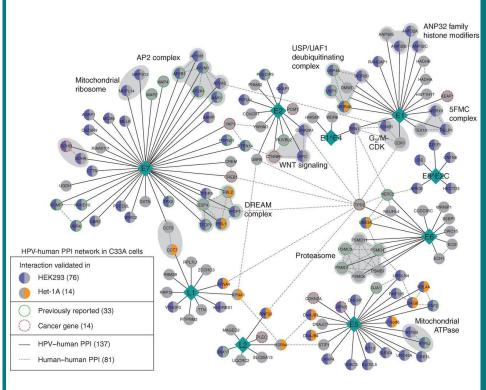
- 1. Study SARS-CoV-2 Human-Protein (HP) interactions through visual networks and extend to other viral pathogens
- 2. Create **composite SARS-CoV-2 network** showing compounds that can inhibit viral/human protein interactions and extend to other viral pathogens
- 3. Build a **database** of viral/human proteins and compounds that inhibit these interactions
- 4. Query the database using **SQL**



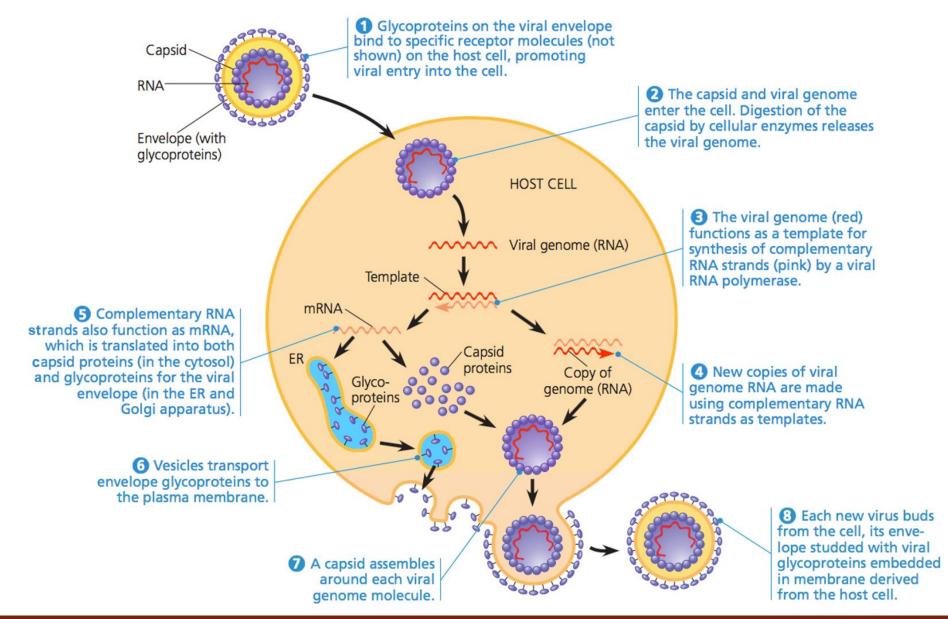
Research Articles and Networks


"A SARS-CoV-2 protein interaction map reveals targets for drug repurposing"

Gordon, D.E., Jang, G.M., Bouhaddou, M. *et al. Nature* 583, p. 462 (2020).


"Global landscape of HIV-human protein complexes"

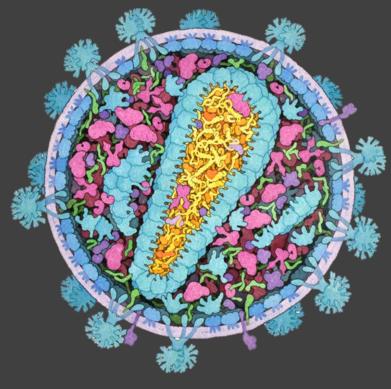
Jäger, S., Cimermancic, P., Gulbahce, N. *et al. Nature* 481, p. 368 (2012).

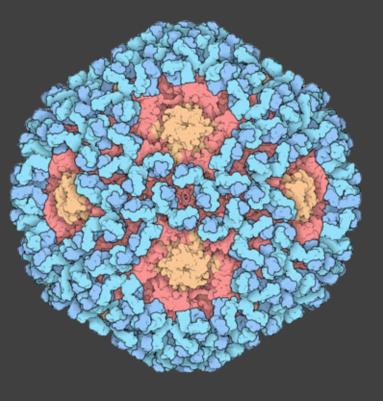

"Multiple Routes to Oncogenesis Are Promoted by the Human Papillomavirus-Host Protein Network"

Eckhardt, M., Zhang, W., Gross, A.M. *et al. Cancer Discovery*, American Association for Cancer Research. Vol. 8, No. 11, p. 1478 (2018).

Source for all networks: ndexbio.org

Viral Life Cycle


https://biology.stackexchange.com/


SARS-CoV-2

Human Immunodeficiency Virus

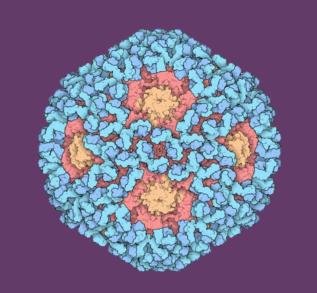
Human Papilloma Virus

Source: Protein Data Bank https://pdb101.rcsb.org/

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

Source: https://in.pinterest.com/pin/732538695626642962/ Taxonomy ID: 2697049 https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id= 2697049

Four structural proteins:

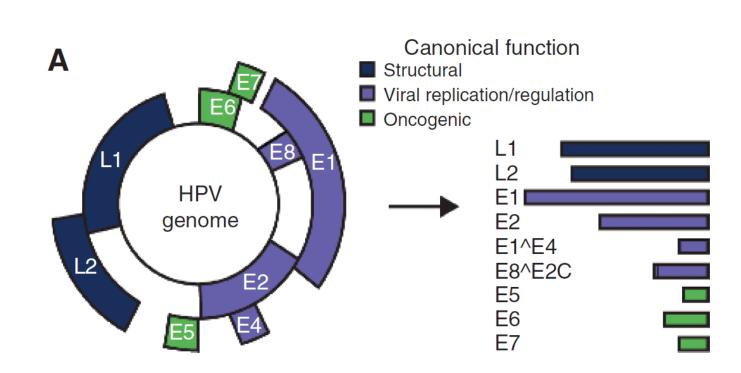

- Spike (S) allows virus to penetrate the cell
- Envelope (E) helps assemble new viruses
- Membrane (M) viral assembly
- Nucleocapsid (N) allows the virus to camouflage its genetic material to the immune system

Sixteen Non-structural proteins:

• Nsp1-16

Process:

- The Spike protein binds to ACE2 protein receptor site in human cell
- After fusing and entering the cytoplasm, the virus commandeers the ribosome and other protein-making machinery to make new copies of itself

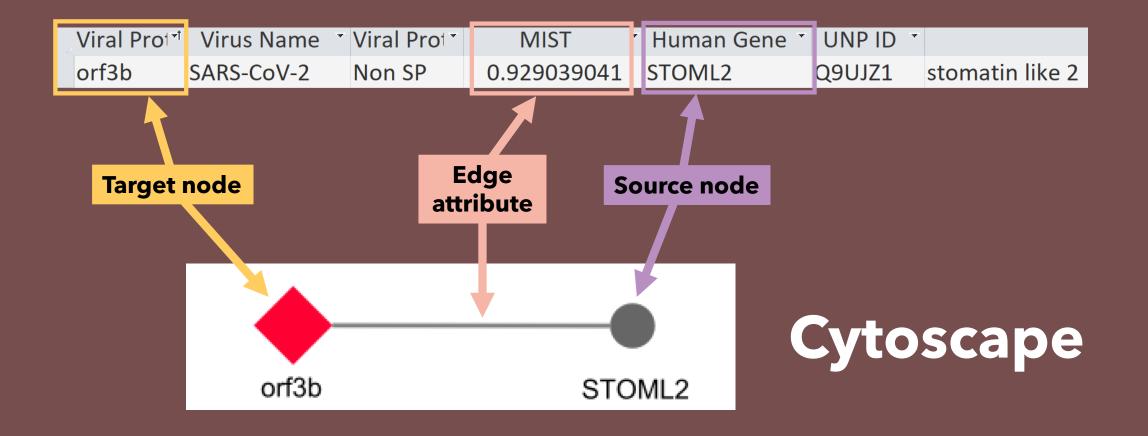


HPV Structure

- The capsid includes 360 copies of the major capsid chain, called L1. A second capsid chain, called L2, is found on the inside and may help with packaging the genome.
- Cancer: The genome encodes two small proteins, called E6 and E7, that act as cancer-causing oncogenes in dangerous strains. They stimulate unnatural growth of cells and block their natural defenses.

https://pdb101.rcsb.org/motm/221

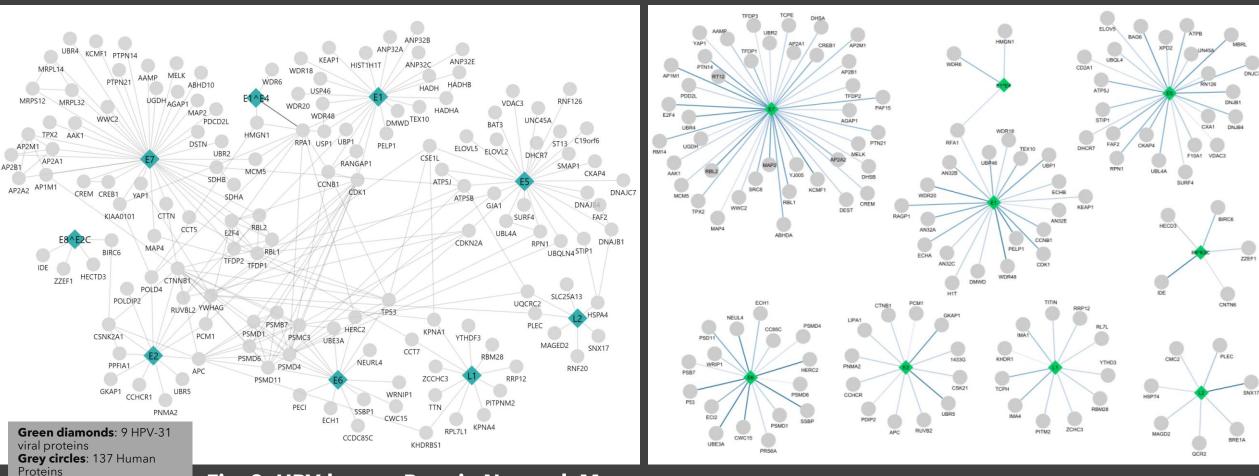
HPV-Host Network Promotes Multiple Routes to Oncogenesis



Manon Eckhardt, Wei Zhang, Andrew M. Gross, *et al. Cancer Discovery*, American Association for Cancer Research. Vol. 8, No. 11, pp. 1477 (2018).

	Proteins en	coded by the HIV g	enome			
Class	Gene name	Primary protein p	oducts	Processed protein products		
	gag	Gag polyprotein		MA, CA, SP1, NC, SP2, P6		
Viral structural proteins	pol	Pol polyprotein		RT, RNase H, IN, PR		
	env	gp160		gp120, gp41		
	tat	Tat			n)	
Essential regulatory elements	rev	Rev		gp120 gp41	env-Glycoprotein Complex	
	nef	Nef			Lipid Membrane Matrix Protein	
A	vpr	Vpr			-240	
Accessory regulatory proteins	vif	Vif	Cap	sid		
	vpu	Vpu	Nucleocaps	id	Protease	
HIV St	ruct	ure	Viral RNA G			
Li G, Piampongsant S et. al. "An integrated map of HIV genom	e-wide variation from a popula	ation perspective".		Integrase Reverse Transcriptase		

Li G, Piampongsant S et. al. <u>"An integrated map of HIV genome-wide variation from a population perspective"</u>. *Retrovirology*. **12** (1): 18.


Create **visual networks** in Cytoscape showing interactions between viral and human proteins

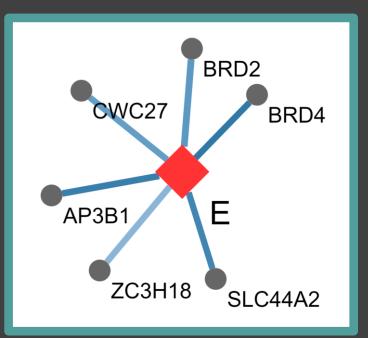
"Multiple Routes to Oncogenesis are Promoted by the Human Papillomavirus-Host Protein Network

Eckhardt, M., Zhang, W., Gross, A.M. *et al. Cancer Discovery*, American Association for Cancer Research. Vol. 8, No. 11, p. 1478 (2018).

Recreated Network in Cytoscape with MIST

Proteins **Grey edges**: HPV-human interactions & human-human interactions.

Fig. 2: HPV-human Protein Network Map


MIST: Mass Spectrometry Interaction Statistics

- Weighted sum of three measures:
 - Abundance: Protein abundance measured by peak intensities from the mass spectrum
 - **Reproducibility:** invariability of abundance over replicated experiments
 - **Specificity:** Uniqueness of an observed host-pathogen interaction across all viral purifications
- For our purposes: it is a quantitative score to establish how strong protein-protein interactions are between the human gene and the viral protein
- Number from 0-1 and is always less than 1, where 0 represents weak interactions and numbers close to 1 represent high confidence interactions.

Jäger, S., Cimermancic, P., Gulbahce, N. *et al. Nature* 481, p. 365 (2012).

"A SARS-CoV-2 protein interaction map reveals targets for drug repurposing"

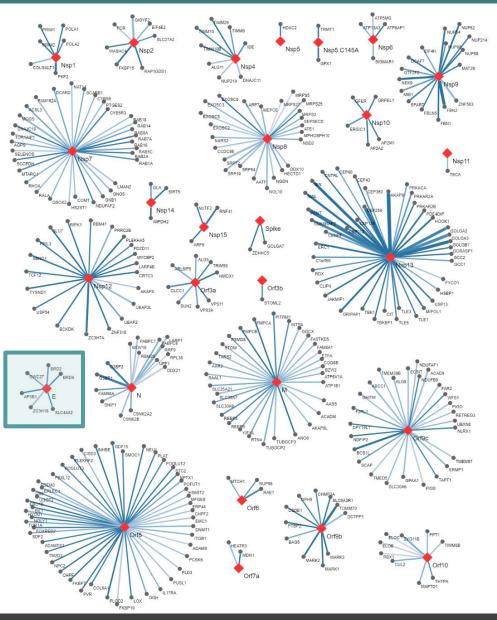
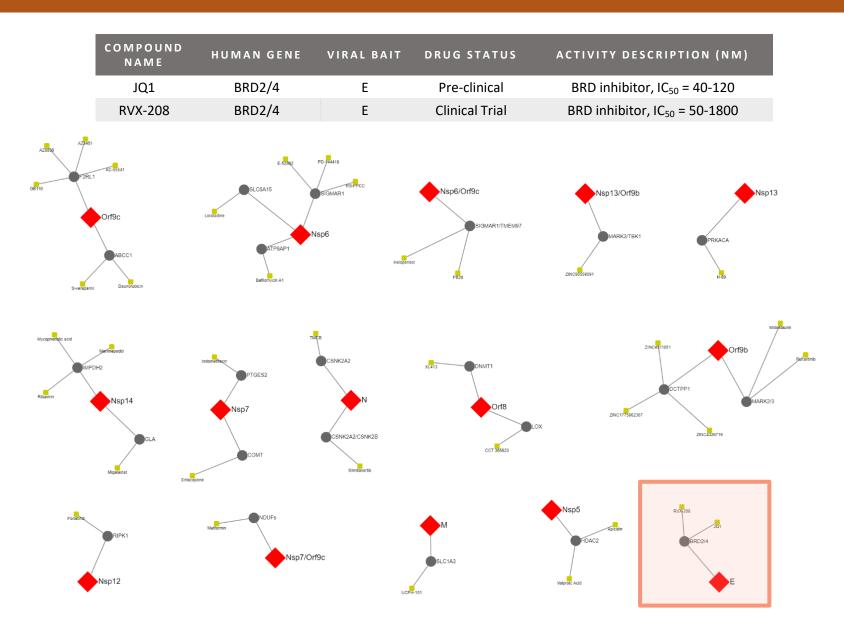
Gordon, D.E., Jang, G.M., Bouhaddou, M. et al. Nature 583, 459–468 (2020)

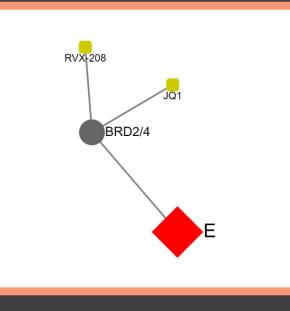
Red diamonds: SARS-CoV-2 bait proteins Grey circles: human protein interaction partners Blue edges: PPIs from this study. Darker blue indicates higher PPI confidence, thicker line indicates greater protein abundance in the AP-MS sample

Grey edges = PPIs from the CORUM

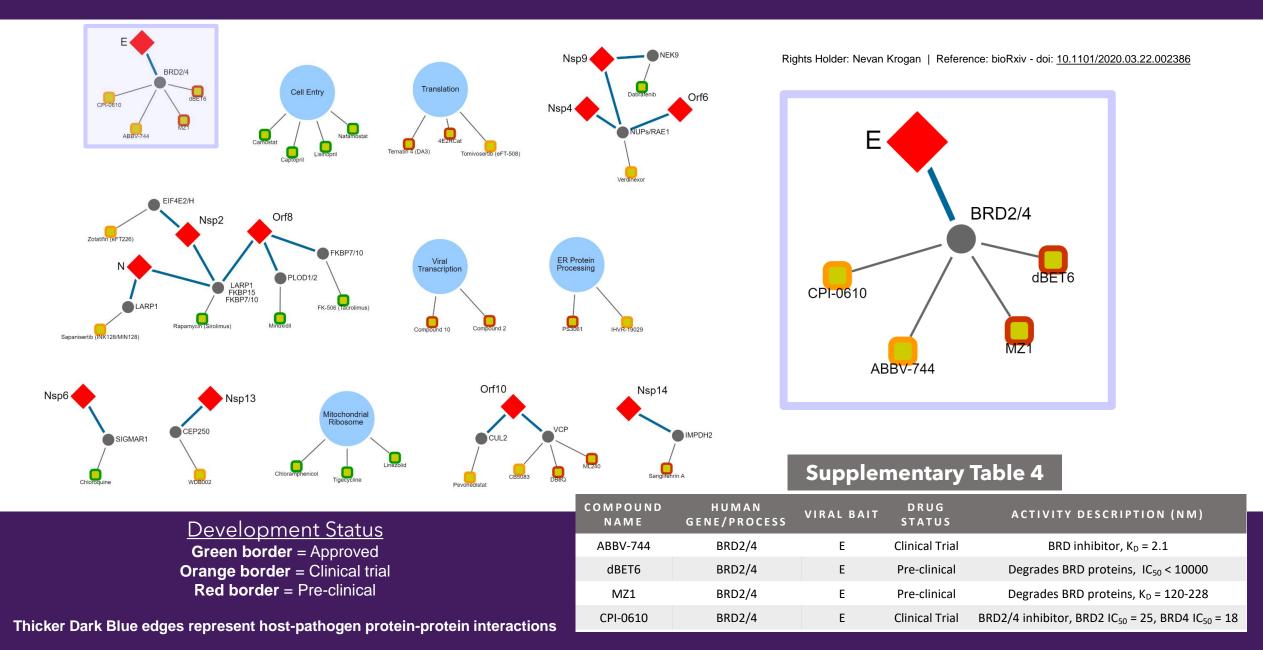
Rights Holder: Nevan Krogan | **Reference:** bioRxiv doi: <u>10.1101/2020.03.22.002386</u>

VIRAL PROTEIN	V I R U S N A M E	VIRAL PROTEIN TYPE	MIST	HUMAN PROTEIN	UNP ID
E	SARS-CoV-2	SP	0.950342834	SLC44A2	Q8IWA5
E	SARS-CoV-2	SP	0.796415039	ZC3H18	Q86VM9
E	SARS-CoV-2	SP	0.89310916	CWC27	Q6UX04
E	SARS-CoV-2	SP	0.906592876	BRD2	P25440
E	SARS-CoV-2	SP	0.97848835	BRD4	O60885
E	SARS-CoV-2	SP	0.963550095	AP3B1	000203

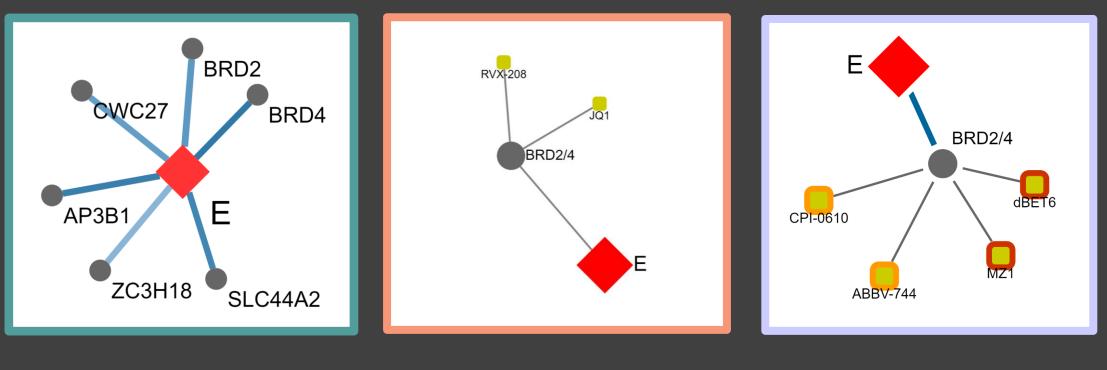




Fig. 3: SARS-CoV-2 Host-Pathogen Interaction Map

Literature-derived drugs and reagents that modulate SARS-CoV-2 interactors

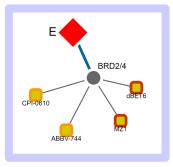


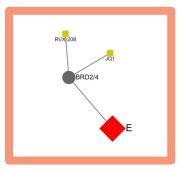
Supplementary Table 3 - Drugtarget associations drawn from chemoinformatic searches of the literature, including information about purchaseability.

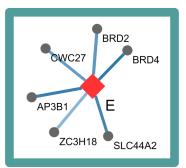

Rights Holder: Nevan Krogan Reference: bioRxiv - doi: <u>10.1101/2020.03.22.002386</u>

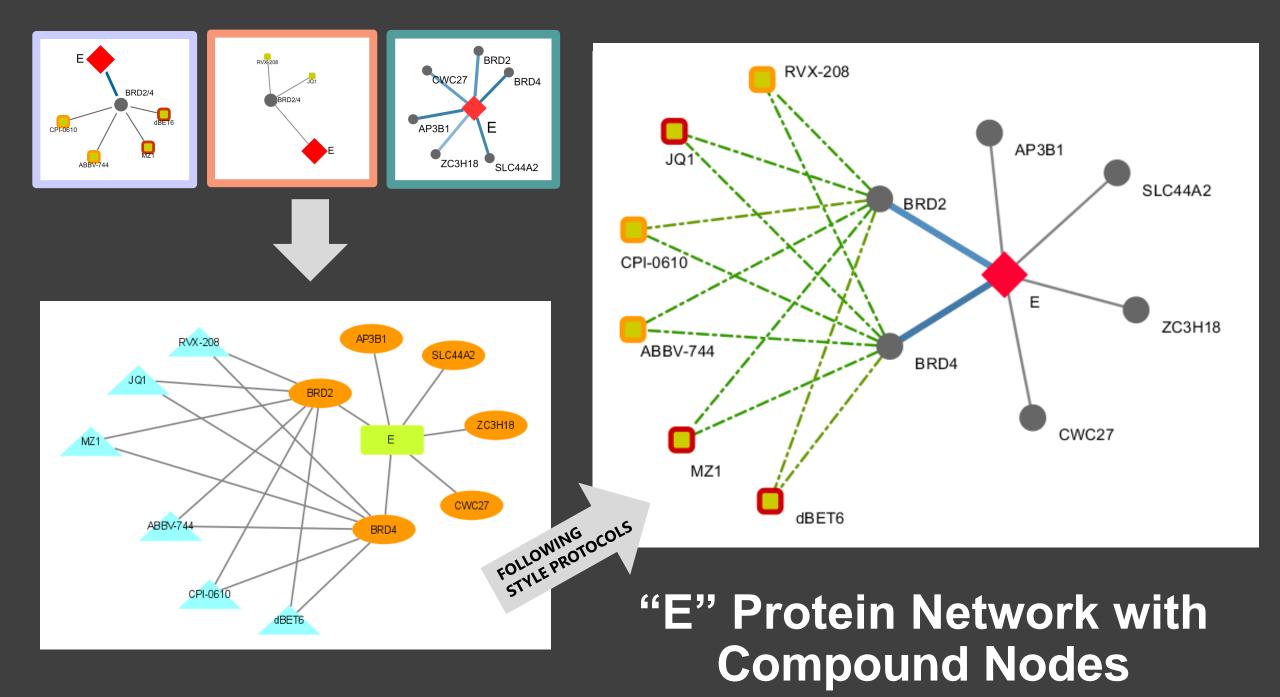
Expert-identified drugs and reagents that modulate SARS-CoV-2 interactors

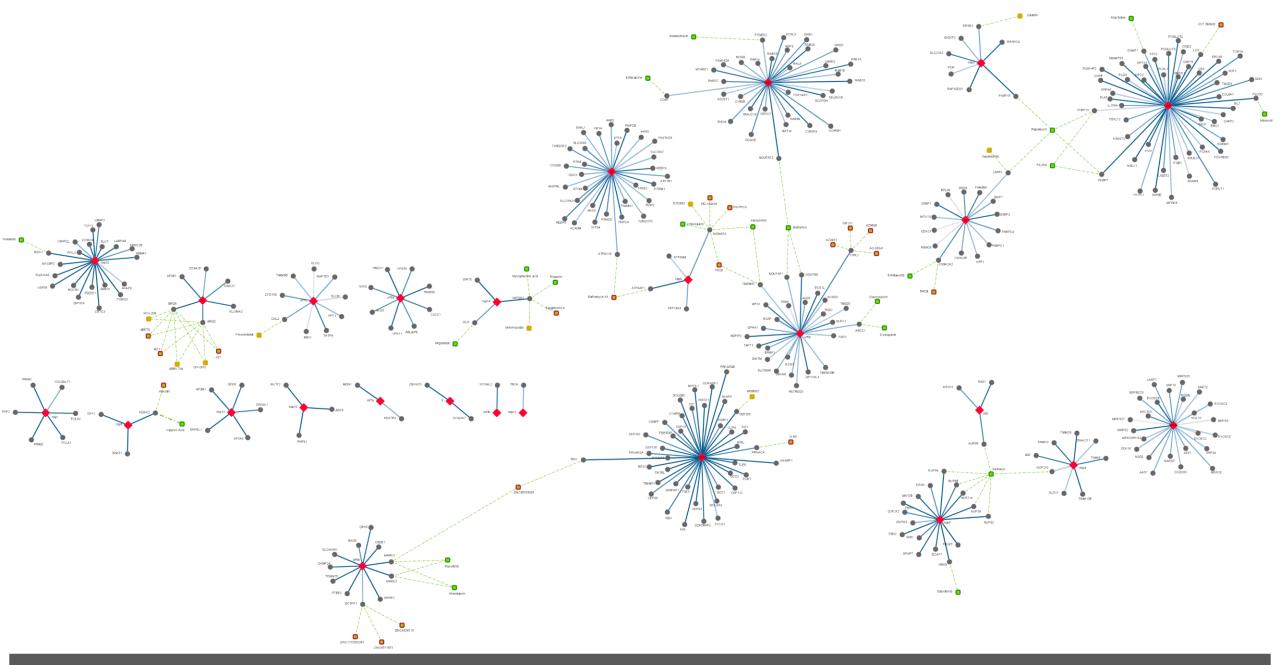
Create a **composite SARS-CoV-2 network** showing compounds that can inhibit viral/human protein interactions

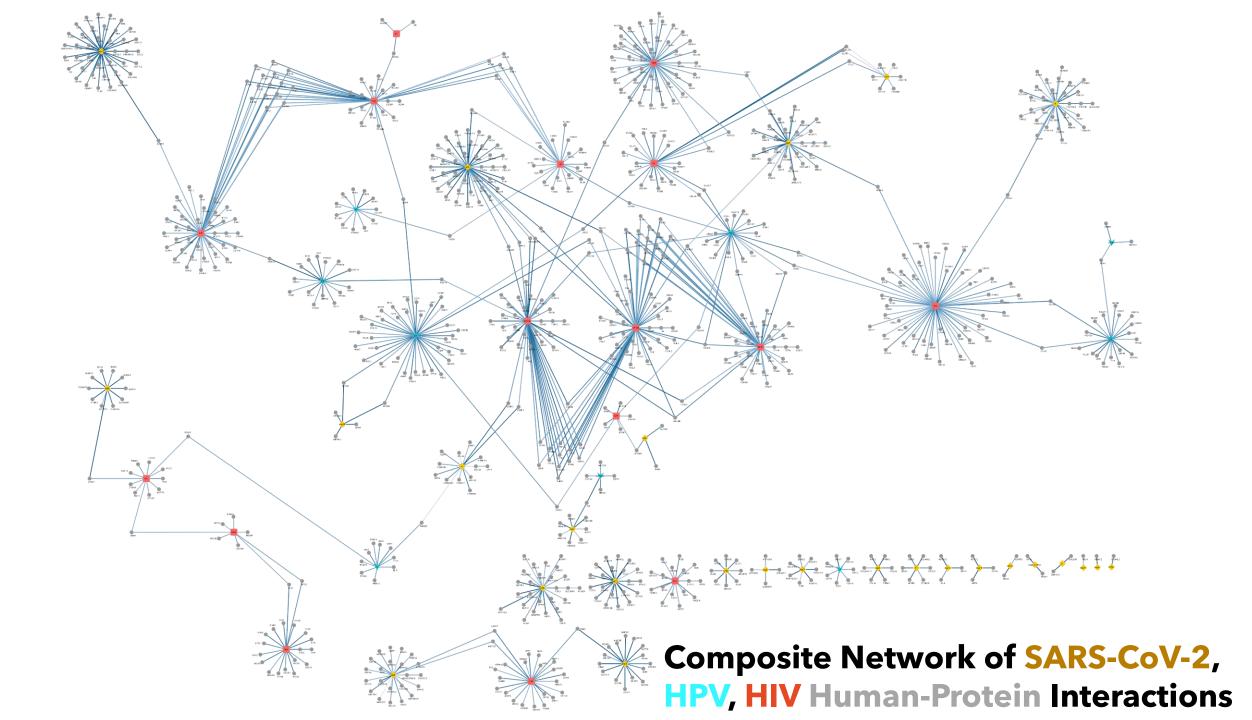

SARS-CoV-2 / Human-Protein


Literature-derived drugs


Expert-identified drugs


Modified Data for "E" Protein - Cytoscape Model


ACTIVITY/ MIST SCORE	HUMAN PROTEIN	UNP ID	DRUG/VIRAL PROTEIN	STATUS/VIRAL TYPE	ACTIVITY/VIRUS
2.1	BRD2	P25440	ABBV-744	Clinical Trial	BRD inhibitor, KD = 2.1
100	BRD2	P25440	dBET6	Pre-clinical	Degrades BRD proteins, IC50 < 10000
120	BRD2	P25440	MZ1	Pre-clinical	Degrades BRD proteins, KD = 120-228
25	BRD2	P25440	CPI-0610	Clinical Trial	BRD2 inhibitor, BRD2 IC50 = 25
2.1	BRD4	O60885	ABBV-744	Clinical Trial	BRD inhibitor, KD = 2.1
100	BRD4	O60885	dBET6	Pre-clinical	Degrades BRD proteins, IC50 < 10000
120	BRD4	O60885	MZ1	Pre-clinical	Degrades BRD proteins, KD = 120-228
18	BRD4	O60885	CPI-0610	Clinical Trial	BRD4 inhibitor, BRD4 IC50 = 18
40	BRD2	P25440	JQ1	Pre-clinical	BRD inhibitor, IC50 = 40-120
50	BRD2	P25440	RVX-208	Clinical Trial	BRD inhibitor, IC50 = 50-1800
40	BRD4	O60885	JQ1	Pre-clinical	BRD inhibitor, IC50 = 40-120
50	BRD4	O60885	RVX-208	Clinical Trial	BRD inhibitor, IC50 = 50-1800
0.906592876	BRD2	P25440	E	SP	SARS-CoV-2
0.97848835	BRD4	O60885	Е	SP	SARS-CoV-2
0.89310916	CWC27	Q6UX04	E	SP	SARS-CoV-2
0.950342834	SLC44A2	Q8IWA5	E	SP	SARS-CoV-2
0.796415039	ZC3H18	Q86VM9	E	SP	SARS-CoV-2
0.963550095	AP3B1	000203	E	SP	SARS-CoV-2



SARS-CoV-2 Full Recreated Network with Compound Nodes

- Build a **database** of viral/human proteins and compounds
- Run **SQL queries**

Basic SQL structure:

SELECT column_1, column_2, etc. FROM table WHERE condition;

List human proteins interacting with "E":

SELECT Main.[Viral Protein], Main.[Human Gene] FROM Main WHERE ((Main.[Viral Protein])="E") And ((Main.[MIST]>0));

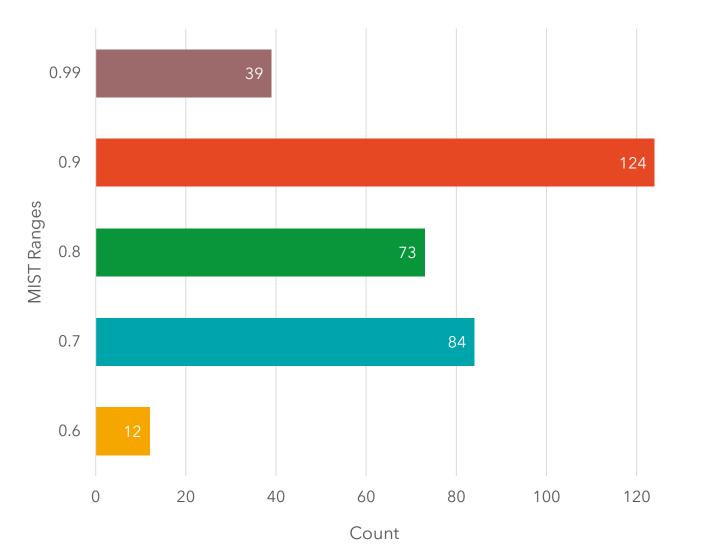
OWC2 AP3B1 ZC3	BRD2 BRD4 E SH18 SLC44A2
Viral Protein	T Human Gene
E	AP3B1
E	BRD2
E	BRD4
E	CWC27
E	SLC44A2
E	ZC3H18

SQL Query

"Switch" operator assigns discrete values for range of MIST Scores in new column called "MISTRange"

- Anything between 0.6 and less than 0.7 is assigned "0.6"
- Anything between 0.7 and less than 0.8 is assigned to "0.7"

SELECT DISTINCT Main.[MIST],


Switch(

Main.[MIST] < 0.70, 0.60, Main.[MIST] < 0.80, 0.70, Main.[MIST] < 0.90, 0.80, Main.[MIST] < 0.99, 0.90, Main.[MIST] < 1, 0.99) AS MISTRange

FROM Main;

MIST	MISTRange
0.618948613	0.6
0.628043125	0.6
0.631167513	0.6
0.63637328	0.6
0.63921796	0.6
0.647089409	0.6
0.655233005	0.6
0.660192254	0.6
0.669574426	0.6
0.672587659	0.6
0.701764404	0.7
0.703620586	0.7
0.704291901	0.7
0.705393478	0.7
0.706328526	0.7
0.706466834	0.7
0.710174697	0.7
0.710961769	0.7
0.71407894	0.7
0.717059992	0.7
0.717265558	0.7
0.718398295	0.7
0.720285746	0.7
0.720456009	0.7
0.721790867	0.7

Range of MIST Scores

SELECT

Sum(IIf((MISTRange.MISTRange)=0.6,1,0)) AS Pt6, Sum(IIf((MISTRange.MISTRange)=0.7,1,0)) AS Pt7, Sum(IIf((MISTRange.MISTRange)=0.8,1,0)) AS Pt8, Sum(IIf((MISTRange.MISTRange)=0.9,1,0)) AS Pt9, Sum(IIf((MISTRange.MISTRange)=0.99,1,0)) AS Pt99

FROM MISTRange

WHERE (((MISTRange.MISTRange) In (0.7,0.8,0.9,0.6,0.99)));

Pt	:6 *	Pt7	*	Pt8	*	Pt9 -	Pt99	*
	12		84		73	124		39

SQL: Common Human Genes In SARS-CoV-2 and HPV Where MIST scores >= 0.6

	А	В	С	D	E
1	Human Gene	SARS-CoV-2 Viral Protein	SARS-CoV-2 MIST (HEK293)	HPV Viral Protein	HPV MIST (C33A)
2	HDAC2	nsp5	0.993708403	L2	0.685510627
3	AP2A2	nsp10	0.99112813	E7	0.882203347
4	AP2M1	nsp10	0.982905884	E7	0.853236047
5	WFS1	orf9c	0.955124813	E5	0.685510241
6	IDE	nsp4	0.918031442	E8^E2C	0.974307196
7	RTN4	Μ	0.873826097	E5	0.685510371
8	AAR2	Μ	0.801486724	E6	0.685511079
9	ACADM	Μ	0.724348569	E7	0.685511333
10	EMC1	orf8	0.723777507	E5	0.685510216
11	АКАР8	nsp12	0.717059992	L1	0.685510281
12	RBM28	Ν	0.628043125	L1	0.816328465

SELECT DISTINCT

Main.[Human Gene], Main.[Viral Protein], Main.[MIST], HPV.[Viral Protein], HPV.[MIST]

FROM Main

INNER JOIN HPV ON Main.[Human Gene] = HPV.[Human Gene]

WHERE Main.MIST>=0.6 And HPV.MIST>=0.6;

	А	В	С	D	E	F
	Human Gene	SARS-CoV-2 Viral	SARS-CoV-2 MIST	HIV Viral Protein	HIV MIST	HIV MIST
1	Human Gene	Protein	HEK293		HEK293	JurKat
2	NGLY1	orf8	0.993220351	GP160	0	0.834
3	NGLY1	orf8	0.993220351	GP41	0	0.756
4	PLOD2	orf8	0.992483418	IN	0.754	0
5	FBN2	nsp9	0.991012329	TAT	0.838	0
6	АКАРЭ	nsp13	0.990813809	PR	0	0.787
7	CSDE1	orf9b	0.988959751	NC	0.812	0
8	G3BP2	Ν	0.958133672	GP120	0	0.838
9	G3BP1	Ν	0.95331626	GP120	0	0.784
10	OS9 orf8		0.931530938	GP160	0	0.915
11	ACSL3 nsp7		0.897068932	VPU	0.821	0.058
12	TOR1A	A orf8		GP120	0	0.846
13	RTN4	Μ	0.873826097	VPU	0.809	0.819
14	MTCH1	orf6	0.851173737	NEF	0.752	0
15	SDF2	orf8	0.826107348	GP120	0.856	0.981
16	SDF2	orf8	0.826107348	GP160	0.829	0.931
17	EDEM3	orf8	0.81834398	GP120	0	0.898
18	CUL2	orf10	0.818290141	VIF	0.776	0.897
19	LARP7	nsp8	0.812479682	TAT	0.54	0.915
20	MEPCE	nsp8	0.790978117	TAT	0.692	0.857
21	HYOU1	orf8	0.77235306	GP120	0.775	0.96
22	СОМТ	nsp7	0.745231765	VPR	0.775	0.244
23	LMAN2	nsp7	0.725773983	GP160	0	0.839
24	LMAN2	nsp7	0.725773983	GP41	0.86	0
25	ELOB	orf10	0.655233005	VIF	0.96	0.928
26	ELOC	orf10	0.618948613	VIF	0.956	0.972

SQL: Common Human Genes In SARS-CoV-2 and HIV Where MIST scores >= 0.6

SELECT DISTINCT

Main.[Human Gene], Main.[Viral Protein], Main.[MIST], HIV.[Viral Protein], HIV.[MIST HEK293], HIV.[MIST JurKat]

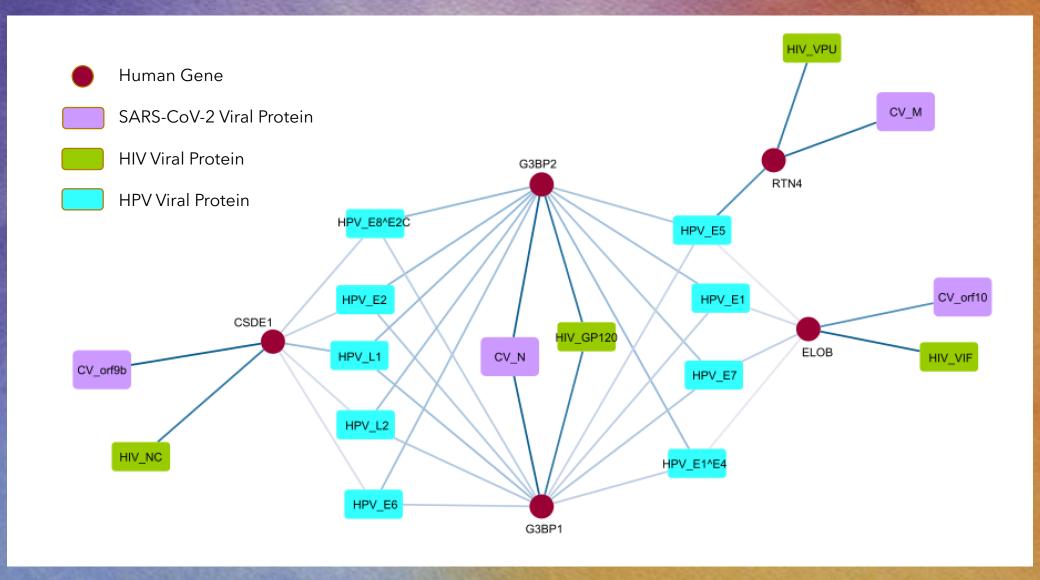
FROM Main

INNER JOIN HIV ON Main.[Human Gene] = HIV.[Human Gene] WHERE Main.MIST>=0.6 And (HIV.[MIST HEK293]>=0.6 OR HIV.[MIST JurKat]>=0.6);

Find the common human proteins that interact with SARS-CoV-2, HIV, and HPV?

SELECT DISTINCT

Main.[Human Gene], Main.[Viral Protein], Main.[MIST], HIV.[Viral Protein], HIV.[MIST HEK293], HIV.[MIST JurKat] HPV.[Viral Protein], HPV.[MIST],


FROM (Main INNER JOIN HPV ON Main.[Human Gene] = HPV.[Human Gene])

INNER JOIN HIV ON HPV.[Human Gene] = HIV.[Human Gene];

Common Gene Interactions In SARS-CoV-2, HIV, HPV

	А	В	С	D	E	F	G	Н
1	Human Gene	SARS-CoV-2 Viral Protein	SARS-CoV-2 MIST HEK293	HIV Viral Protein	HIV MIST HEK293	HIV MIST JurKat	HPV Viral Protein	HPV MIST (C33A)
2	CSDE1	orf9b	0.988959751	NC	0.812	0	E2	0.176316087
3	CSDE1	orf9b	0.988959751	NC	0.812	0	E6	0.0698267
4	CSDE1	orf9b	0.988959751	NC	0.812	0	E8^E2C	0.186285804
5	CSDE1	orf9b	0.988959751	NC	0.812	0	L1	0.356805069
6	CSDE1	orf9b	0.988959751	NC	0.812	0	L2	0.103342845
7	G3BP2	Ν	0.958133672	GP120	0	0.838	E1	0.322921149
8	G3BP2	Ν	0.958133672	GP120	0	0.838	E1^E4	0.363596661
9	G3BP2	Ν	0.958133672	GP120	0	0.838	E2	0.383268897
10	G3BP2	Ν	0.958133672	GP120	0	0.838	E5	0.290177749
11	G3BP2	Ν	0.958133672	GP120	0	0.838	E6	0.317960495
12	G3BP2	Ν	0.958133672	GP120	0	0.838	E7	0.289612609
13	G3BP2	Ν	0.958133672	GP120	0	0.838	E8^E2C	0.385217699
14	G3BP2	Ν	0.958133672	GP120	0	0.838	L1	0.365959601
15	G3BP2	Ν	0.958133672	GP120	0	0.838	L2	0.32994147
16	G3BP1	Ν	0.95331626	GP120	0	0.784	E1	0.196739252
17	G3BP1	Ν	0.95331626	GP120	0	0.784	E1^E4	0.200569845
18	G3BP1	Ν	0.95331626	GP120	0	0.784	E2	0.263651559
19	G3BP1	Ν	0.95331626	GP120	0	0.784	E5	0.161791186
20	G3BP1	Ν	0.95331626	GP120	0	0.784	E6	0.20952895
21	G3BP1	Ν	0.95331626	GP120	0	0.784	E7	0.26312747
22	G3BP1	Ν	0.95331626	GP120	0	0.784	E8^E2C	0.204416776
23	G3BP1	Ν	0.95331626	GP120	0	0.784	L1	0.335680758
24	G3BP1	N	0.95331626	GP120	0	0.784	L2	0.258371514
25	RTN4	М	0.873826097	VPU	0.809	0.819	E5	0.685510371
26	ELOB	orf10	0.655233005	VIF	0.96	0.928	E1	0.120568043
27	ELOB	orf10	0.655233005	VIF	0.96	0.928	E1^E4	0.016731554
28	ELOB	orf10	0.655233005	VIF	0.96	0.928	E5	0.016963384
29	ELOB	orf10	0.655233005	VIF	0.96	0.928	E7	0.189816337

Cytoscape: Common Gene Interactions In SARS-CoV-2, HIV, HPV

Common Gene Interactions In SARS-CoV-2, HIV, HPV Where MIST scores >= 0.6

	А	В	С	D	E	F	G	Н	Ι
1	UNP ID	Human Gene	SARS-CoV-2 Viral Protein	SARS-CoV-2 MIST HEK293	HIV Viral Protein	HIV MIST HEK293	HIV MIST JurKat	HPV Viral Protein	HPV MIST (C33A)
2	Q9NQC3	RTN4	Μ	0.873826097	VPU	0.809	0.819	E5	0.685510371

SELECT DISTINCT Main.[Human Gene], Main.[UNP ID],

```
Main.[Viral Protein], Main.[MIST],
HIV.[Viral Protein], HIV.[MIST HEK293], HIV.[MIST JurKat],
HPV.[Viral Protein], HPV.[MIST]
```

FROM (Main INNER JOIN HIV ON Main.[Human Gene] = HIV.[Human Gene]) INNER JOIN HPV ON HIV.[Human Gene] = HPV.[Human Gene]

```
WHERE Main.[MIST]>=0.6 AND HPV.[MIST]>=0.6
AND (HIV.[MIST HEK293]>=0.6 OR HIV.[MIST JurKat]>=0.6);
```

Acknowledgements

- Dr. Phalguni Ghosh: Mentor and Research advisor.
- Dr. Sutapa Ghosh from the RCSB Protein Data Bank for her hours of support in project direction, understanding protein and viral structures, and bioinformatics software.
- Dr. Mark McCormick, President and Linda Scherr, Vice President, Academic Affairs, for their continued support in the research program
- Dr. Donna Howell, currently acting Dean, and Dr. Michael Ansonoff, Chairperson, Department of Natural Sciences for their encouragement and financial support
- Research peers for their support and encouragements.